Infrared characterization of the guanine radical cation: finger printing DNA damage.

نویسندگان

  • Anthony W Parker
  • Ching Yeh Lin
  • Michael W George
  • Michael Towrie
  • Marina K Kuimova
چکیده

Oxidation of DNA represents a major pathway of genetic mutation. We have applied infrared spectroscopy in 77 K glass with supporting density functional theory (DFT) calculations (EDF1/6-31+G*) to provide an IR signature of the guanine radical cation G(+*), formed as a result of 193 nm photoionization of DNA. Deprotonation of this species to produce the neutral radical G(-H)(*) does not occur in 77 K glass. DFT calculations indicate that the formation of G(+*) within the double helix does not significantly perturb the geometry of the G/C pair, even though there is a significant movement of the N(1) proton away from G toward C. However, this is in stark contrast to drastic changes that are expected if full deprotonation of G/C occurs, producing the G(-H)(*)/C pair. These results are discussed in light of solution-phase time-resolved IR spectroscopic studies and demonstrate the power of IR to follow dynamics of DNA damage in natural environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-phase infrared spectrum and acidity of the radical cation of 9-methylguanine.

Oxidative damage to DNA yields guanine radical cations. Their gas-phase IR spectroscopic signature and acidity have been modelled by the radical cation of 9-methylguanine. Comparisons with quantum chemistry calculations suggest that radical cation formation produces the ground-state keto tautomer, which has an N-H acidity enhanced by ~470 kJ mol(-1).

متن کامل

Long-range oxidative damage in duplex DNA: the effect of bulged G in a G-C tract and tandem G/A mispairs.

Two series of duplex DNA oligomers were prepared having an anthraquinone derivative (AQ) covalently linked at a 5'-terminus. Irradiation of the AQ at 350 nm leads to injection of an electron hole (radical cation) into the DNA. The radical cation migrates through the DNA causing reaction primarily at G(n) sequences. In one series, GA tandem mispairs are inserted between GG steps to assess the ef...

متن کامل

Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide.

Site-specific DNA damage by Cu(II) plus H2O2 was investigated by a DNA-sequencing technique. Cu(II) plus H2O2 induced strong DNA cleavage even without piperidine treatment. Piperidine-labile sites were induced frequently at thymine and guanine residues and rarely at adenine residue. A Cu(I)-specific chelating agent, bathocuproine, inhibited the DNA damage. Neither ethanol nor mannitol inhibited...

متن کامل

Oxidation of DNA: damage to nucleobases.

All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of i...

متن کامل

Oxidatively generated damage to DNA at 5-methylcytosine mispairs.

Oxidatively generated damage to DNA has been implicated as causing mutations that lead to aging and disease. The one-electron oxidation of normal DNA leads to formation of a nucleobase radical cation that hops through the DNA until it is trapped irreversibly, primarily by reaction at guanine. It has been observed that 5-methylcytosine (C(m)) is a mutational "hot-spot". However, C(m) in a Watson...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 10  شماره 

صفحات  -

تاریخ انتشار 2010